CRĀSI News

Tuesday, January 3, 2017

STAMI has awarded 2017 Seed Grants to Georgia Tech researchers that are members of the Community for Research on Active Surfaces and Interfaces (CRĀSI) and the Soft Matter Incubator (SMI). Proposals were selected on a competitive basis. The 2017 CRĀSI seed grant program sought innovative proposals addressing fundamental scientific questions pertaining to surfaces and interfaces, and two collaborative proposals were selected. The 2017 SMI seed grant program sought proposals addressing questions pertaining to fundamental soft matter, and three collaborative proposals were selected. Learn more.

Tuesday, January 3, 2017
Image: From: The National Academy of Inventors

Professor Seth Marder, from the Georgia Tech Schools of Chemistry and Biochemistry and Materials Science and Engineering, has been elected as a Fellow of the National Academy of Inventors (NAI). According to the NAI, "Election to NAI Fellow status is the highest professional distinction accorded solely to academic inventors who have demonstrated a prolific spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development, and welfare of society." Professor Marder is the first NAI fellow from the Georgia Tech College of Sciences. Read more here.

Monday, December 12, 2016
Image: The surface orientation of perylene diimide (PDI) surface modifiers can be changed based on the deposition technique.

Modification of the TCO surface with a redox-active surface modifier is a possible approach toward enhancing OPV efficiency by providing an efficient charge-transfer pathway between either hole- or electron-harvesting contacts and the organic active layer. Two different deposition techniques were used with perylene diimide (PDI) surface modifiers in the study: adsorption from solution (SA) and spin coating (SC), to create three types of monolayer films on ITO: SA PDI–phenyl–PA, SA PDI–diphenyl–PA, and SC PDI–phenyl–PA. These thin films, designed to act as “charge-transfer mediators”, were used to study relationships between molecular structure, electron-transfer (ET) kinetics, and electronic structure.